

Oklahoma University Children's Medical Office Building Oklahoma City, O.K.

Alec Canter, BAE
Mechanical Option

Advisor: Laura Miller

Presentation Outline

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth
 - VRF System
 - Dedicated Outdoor Air System
 - Evaluation
- Acoustics Breadth
 - VRF Indoor Units
 - Design Criteria
 - Room Noise Criteria
- Conclusion

Project Background

- Project Background:
 - Building Statistics
 - Layout
- Existing Conditions
- Thesis Goals
- Mechanical Depth
- Acoustics Breadth
- Conclusion

Building Statistics

- Location: Oklahoma City, Oklahoma
- Size (Gross Square Feet): 337,000
- 12 Stories Above Grade, 1 Below
- Function: Medical Office Building
- Overall Project Cost: \$60,000,000
- Construction: Spring 2006 Spring 2009

Project Background

Floor Layout

⟨DN

Room Locations

Project Background:

- Building Statistics
- Layout
- Existing Conditions
- Thesis Goals
- Mechanical Depth
- Acoustics Breadth
- Conclusion

- Offices, patient Rooms, and conference rooms populate the North and East exterior faces.
- Waiting areas and the main lobby are located on the South and West side
- All other labs, exam rooms, and special equipment rooms such a X-ray rooms dominate the interior

Alec Canter

Oklahoma University Children's MOB

- Project Background
- Existing Conditions:
 - Mechanical System
 - Design Conditions
 - Energy Model Evaluation
- Thesis Goals
- Mechanical Depth
- Acoustics Breadth
- Conclusion

Mechanical Design

- Floor-by-floor air handling systems
- 12 Air Handling Units in Total
- Utilizes hydronic heat and cooling supplied by central plant to main mechanical room in the basement
- VAV terminal units distribute air to each space
- Heating water for zone reheat

Mechanical Room Locations

- Project Background
- Existing Conditions:
 - Mechanical System
 - Design Conditions
 - Energy Model Evaluation
- Thesis Goals
- Mechanical Depth
- Acoustics Breadth
- Conclusion

Climate Zone

Design Conditions

Oklahoma City resides in Climate Zone 3A, which is characterized as being Warm-Humid

Design Settings	Summer	Winter	
Outdoor Air Dry Bulb [°F]	96	17	
Outdoor Air Wet Bulb [°F]	75	-	
Relative Humidity [%RH]	50		
ndoor Air Dry Bulb [°F]	75	72	
ndoor Air Wet Bulb [°F]	62	60	

Alec Canter

- Project Background
- Existing Conditions:
 - Mechanical System
 - Design Conditions
 - Energy Model Evaluation
- Thesis Goals
- Mechanical Depth
- Acoustics Breadth
- Conclusion

Air Handling Unit Schedule

-1	Design vs. Calculated Airflow					
Floor	Designed [cfm]	esigned [cfm] Calculated [cfm]				
Basement	15000	10929	27.14			
Third	25000	25854	3.42			
Fourth	25000	25498	1.99			
Fifth	25000	25829	3.32			
Sixth	25000	26242	4.97			
Seventh	25000	25692	2.77			
Eighth	25000	26070	4.28			
Ninth	25000	23254	6.98			
Tenth	25000	23039	7.84			

Energy Summary

Annual Energy Consumption

- Project Background
- Existing Conditions:
 - Mechanical System
 - Design Conditions
 - Energy Model Evaluation
- Thesis Goals
- Mechanical Depth
- Acoustics Breadth
- Conclusion

Emissions

- Estimated CO₂ Emissions: 6,152,946 lbm/year
- Estimated No_x and SO₂ Emissions: 56 lbm/year
- Total CO₂ Equivalent Emissions: 6,153,002 lbm/year

Energy Consumption

Energy Consumption				
Site Energy [Btu/ft²-yr]	86724			
Source Energy [Btu/ft ² -yr]	234585			

Thesis Goals

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth
- Acoustics Breadth
- Conclusion

Propose a system that could:

- Reduce energy use
- Reduce operating costs
- Reduce emissions
- Improve occupant temperature control

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth:
 - VRF Design
 - Dedicated Outdoor Air System
 - Evaluation
- Acoustics Breadth
- Conclusion

Plan

Design a Variable Refrigerant Flow (VRF) system to serve each floor

- Condenser units will be located on the roof
- Indoor units will be paired with a DOAS

Replace existing air handling units on each floor to serve to zones 100% outdoor air and treat incoming air

Indoor units will be ducted and served by DOAS

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth:
 - VRF Design
 - Dedicated Outdoor Air System
 - Evaluation
- Acoustics Breadth
- Conclusion

Basic VRF Design

VRF with Heat Recovery

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth:
 - VRF Design
 - Dedicated Outdoor Air System
 - Evaluation
- Acoustics Breadth
- Conclusion

Loads per Floor

Floor	Cooling [tons]	Heating [MBH]
0	20.8	106.9
3	40.4	59.5
4	39.0	60.4
5	39.6	56.2
6	42.9	61.3
7	41.1	60.7
8	40.3	61.1
9	33.8	51.5
10	35.4	53.4

Typical Floor Layout

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth:
 - VRF Design
 - Dedicated Outdoor Air System
 - Evaluation
- Acoustics Breadth
- Conclusion

Loads by Floor

Floor	Cooling [tons]	Heating [MBH]
0	20.8	106.9
3	40.4	59.5
4	39.0	60.4
5	39.6	56.2
6	42.9	61.3
7	41.1	60.7
8	40.3	61.1
9	33.8	51.5
10	35.4	53.4

Zone Design

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth:
 - VRF Design
 - Dedicated Outdoor Air System
 - Evaluation
- Acoustics Breadth
- Conclusion

Typical Zone Layout

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth:
 - VRF Design
 - Dedicated Outdoor Air System
 - Evaluation
- Acoustics Breadth
- Conclusion

Condenser Schedule

	Condenser Unit Sizes					
Floor/Units	Interior Zone [tons]	Exterior Zone [tons]				
F0/CU-1,CU-2	20	-				
3/CU-3,CU-4	10	28				
4/CU-5,CU-6	12	26				
5/CU-7,CU-8	12	26				
6/CU-9,CU-10	12	28				
7/CU-11,CU-12	10	28				
8/CU-13,CU-14	10	28				
-9/CU-15,CU-16	8	26				
10/CU-16,CU-17	8	28				

General Design Requirements

- 540 linear feet of piping between condensing unit and furthest located fan coil unit or equivalent
- 3,280 total one-way piping in the complete piping network
- 164 feet in vertical separation between the condensing unit and the fan coil units
- 49 feet in vertical separation between fan coil units

Alec Canter

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth:
 - VRF Design
 - Dedicated Outdoor Air System
 - Evaluation
- Acoustics Breadth
- Conclusion

Evaluation

System Power Requirements

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth:
 - VRF Design
 - Dedicated Outdoor Air System
 - Evaluation
- Acoustics Breadth
- Conclusion

Evaluation

System Power Requirements

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth:
 - VRF Design
 - Dedicated Outdoor Air System
 - Evaluation
- Acoustics Breadth
- Conclusion

Required Airflow Comparison

	Required Airflow					
Floor	Original Design [cfm]	Redesign [cfm]	Percent Difference			
asement	10929	8912	18.46			
nird	25854	25225	2.43			
ourth	25498	18438	27.69			
fth	25829	21691	16.02			
xth	26242	23180	11.67			
eventh	25692	21704	15.52			
ghth	26070	25412	2.52			
inth	23254	19379	16.66			
enth	23039	20708	10.12			
otal	212407	184648	13.07			

Fan Utilization

	Fan Energy Sav	ings
Original Design kBtu/yr]	Redesign [kBtu/yr]	Energy Saved [kBtu/yr]
969,700	741,400	228,300

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth:
 - VRF Design
 - Dedicated Outdoor Air System
 - Evaluation
- Acoustics Breadth
- Conclusion

Energy

Energy Consumption	Existing	Redesign	Reduction
Breakdown	[kBtu/yr]	[kBtu/yr]	[kBtu/yr]
Heating	2796067	98689	2697378
Cooling	3351931	2496724	855207
Fans & Pumps	969706	741378	228328
Lighting & Receptacle	5742841	5742841	_
Total	12860545	9079632	3780913

Total Operating Cost:

• Existing: \$298,360/year, \$1.55/ft²

• Redesign: \$179,028/year, \$0.93/ft²

Total Annual Savings: \$119,332

Emissions

Existing CO₂ Equivalent Production: 6,153,002 lbm/year

Redesign CO₂ Equivalent Production: 3,951,153 lbm/year

Total Reduction: 2,201,849 lbm/year ~64% Decrease

Occupant Comfort

It is implied VRF Heat Recovery system design creates increased controllability by allowing simultaneous heating and cooling for occupant comfort

Alec Canter

Oklahoma University Children's MOB

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth
- Acoustics Breadth:
 - VRF Indoor Units
 - Design Criteria
 - Room Noise Criteria
- Conclusion

Sound Power Levels

Model FXMQ_PVJU Ducted Concealed						
Cooling	Capacity	Sound Leve	ls (dBA)			
BTU/h	Tons	Cooling	Heating			
7500	0.6	29	33			
9500	0.75	29	333			
12000	1	29	34			
18000	1.5	37	41			
24000	2	38	42			
30000	2.5	39	43			
36000	3	39	43			
48000	4	40	44			

Indoor Unit Types

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth
- Acoustics Breadth:
 - VRF Indoor Units
 - Design Criteria
 - Room Noise Criteria
- Conclusion

Existing Sound Power Levels

Octave Band (Hz)	63	125	250	500	1000	2000	4000	8000
Supply Fan Power Level, L _w (dB)	94	94	88	87	85	83	78	72
Return Power Level, Lw (dB)	84	86	77	77	76	74	64	60
Combined Sound Power Level, L _w (dB)	94	95	88	87	86	84	78	72

Octave Band (Hz)	63	125	250	500	1000	2000	4000	8000
VAV Sound Power Level, Lw (dB)	60	60	54	44	42	39	34	34

VRF with DOAS Units

Octave Band (Hz)	63	125	250	500	1000	2000	4000	8000
Supply Fan Power Level, L _w (dB)	90	91	85	84	84	81	76	71
Exhaust Fan Power Level, Lw (dB)	76	77	76	73	71	68	65	60
Combined Sound Power Level, L _w (dB)	90	91	86	84	84	81	76	71

Octave Band (Hz)	63	125	250	500	1000	2000	4000	8000
VRF Sound Power Level, Lw (dB)	44	49	40	37	38	34	22	14

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth
- Acoustics Breadth:
 - VRF Indoor Units
 - Design Criteria
 - Room Noise Criteria
- Conclusion

Spectrum Noise Levels

Octave Band (Hz)	63	125	250	500	1000	2000	4000	8000
VAV-AHU Sound Power Level at Room	60	63	62	23	6	0	43	44
VAV-AHU Sound Pressure Level	49	52	51	12	0	0	32	33
VRF-DOAS Sound Power Level at Room	55	60	58	13	0	0	7	6
VRF-DOAS Sound Pressure Level	44	49	47	2	0	0	0	0

Noise Criteria for Waiting Room 0300

Oklahoma University Children's MOB

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth
- Acoustics Breadth:
 - VRF Indoor Units
 - Design Criteria
 - Room Noise Criteria
- Conclusion

NC-Ratings by Floor

NC-Rating							
oor	Room Designation	Existing	Redesign				
	Waiting Room	42	37				
	Exam Room	45	46				
	Faculty Office	45	38				
	Exam Room	44	45				
	Vitals Area	51	55				
	Dictation Room	53	54				
	Consultation	51	49				
	Reception Area	39	33				
	Shared Break Room	50	50				

Evaluation

- Noise Criteria levels are based on the background noise present within the space
- Overall, 50% of the rooms investigated with the combine VRF-DOAS system performed better than the existing VAV spectrum levels
- The rooms that performed worse were within the standard Noise Criterion levels
- Additionally, those that performed worse were within 4 NC-values
- Therefore, the design is sufficient without needing any redesign

Alec Canter

Oklahoma University Children's MOB

Conclusion

Overall Evaluation

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth
- Acoustics Breadth
- Conclusion

VRF System with DOAS Investigation:

- **Increased Occupant Control**
- **Decreased Energy Consumption**
- **Decreased Operating Costs**
- **Decreased Emissions**

Recommended

Indoor Unit Acoustic Investigation:

- Remains consistent with existing design
- 50% of spaces studied had improved background noise level with the indoor units and DOAS
- Meets standard NC rating room requirements

Alec Canter

Oklahoma University Children's MOB

Conclusion

- Project Background
- Existing Conditions
- Thesis Goals
- Mechanical Depth
- Acoustics Breadth
- Conclusion

Special Thanks:

The Pennsylvania State University
Architectural Engineering Department

Thesis Advisor: Dr. Laura Miller

Jorge Charneco, AIA; Miles Associates

Thanks to all my family and friends

Alec Canter

Questions?

